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Multiple Band-Pass Filtering Method for Improvement on
Prediction Accuracy of Linear Multivariate Analysis
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An approach coupling signal processing and partial least-squares
regression analysis (PLS) is described in which raw spectral data
are processed with a multiple band-pass � lter and the � ltered spec-
tra are used in a PLS to build a calibration model for the analyte
of interest. The multiple band-pass � lter is speci� cally designed for
a desired analyte based on the Fourier frequency characteristics of
the pure spectrum of the desired analyte and the spectra of the
interference background. It maximizes the ratio of signal to back-
ground. This combined multiple band-pass � ltering and PLS meth-
od (MFPLS) was evaluated by determining clinically relevant levels
of glucose, urea, ethanol, and acetaminophen in simulated human
sera, in which triglyceride was simulated with triacetin; bovine se-
rum albumin and globulin were used to model protein molecules in
the serum. The results demonstrate that MFPLS produces better
accuracy of prediction than PLS in all instances.

Index Headings: Multivariate calibration; Near-infrared Raman
spectroscopy; Digital � lter.

INTRODUCTION

Linear multivariate calibration is frequently used to re-
late the concentration of a desired analyte to a measured
response such as absorption and Raman spectra of multi-
component mixtures or complex biological samples.1,2

The optimal choice of a multivariate algorithm depends
on the available information on the measurements. In
many cases, only the concentrations of one or a few an-
alytes of interest in a set of multi-component mixtures
are known. The corresponding spectra of the mixtures,
called the calibration set, can be used with linear multi-
variate calibration methods such as a partial least-squares
(PLS) and principal component regression (PCR) to build
a calibration model for the analytes of interest. Investi-
gations have demonstrated that PLS is an effective meth-
od for quanti� cation of a desired analyte in the multi-
component mixtures because of the quality of the cali-
bration models produced.2,3

In a standard PLS regression procedure, the latent var-
iables are calculated simultaneously along with the de-
velopment of the calibration model. The concentration
information concerning the desired analyte is used to de-
termine the latent variables and ensure the maximum cor-
relation of the variables with the response of the desired
analyte in the calibration set. Hence, PLS has better ca-
pability than other methods to reject interference and
build a reliable calibration model. However, even with
such a sophisticated regression procedure, confounding
of the desired signal by interferants such as irrelevant
components, noise, and baseline variation will affect the
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accuracy of PLS prediction. The calibration model can
be severely corrupted when the contribution of the de-
sired signal to the signal variance of a multi-component
mixture is much smaller than that of the interferants. In
a previous study of near-IR Raman tests on glucose in
the human sera, we found that the signal of glucose at
the physiological level is hundreds of times lower than
that of the proteins.4 The PLS calibration model built on
the Raman spectral data of human serum samples pro-
duced poor accuracy of prediction of glucose concentra-
tion. To demonstrate that the large molecules are the ma-
jor interferants causing the corruption of the PLS model,
we removed them by ultra� ltration. The prediction ac-
curacy was improved tremendously in the PLS calibra-
tion model built on the spectra recorded from the ultra� l-
tered serum samples.4 Though the ultra� ltration can
‘‘physically’’ eliminate major interference, the procedure
has many limitations. In particular, it becomes invalid
when the molecular weights of desired analytes are not
signi� cantly different from those of the major interfer-
ants. An approach that does not require complicated pre-
processing of samples and can improve the multivariate
calibration is then more desirable.

Various approaches have been explored in an attempt
to minimize the prediction error in PLS caused by un-
informative signals, which confound the calibration mod-
el. It was demonstrated that an optimally designed digital
� lter for spectral preprocessing could improve the results
of PLS by removing spectral artifacts prior to the build-
ing of the calibration model.5,6 A method using wavelet
analysis to extract the relevant component for multivari-
ate calibration was introduced.7 The improved PLS re-
sults show that this approach could successfully remove
noise and irrelevant information from the spectra for mul-
tivariate calibration. In the past ten years, considerable
effort has been made to develop the variable selection
method for identifying a subset of spectral data that pro-
duces the best accuracy in PLS calibration.8–13 Further-
more, it has been mathematically proved that variable
selection can remove the useless data that confounds PLS
models and improve the calibration.14

It should be noted that the standard PLS procedure
does not assume the pure spectrum of the desired analyte
as known a priori. In PLS, the spectral information of a
single analyte is hidden in the latent variables. For the
methods summarized above, the pure spectrum of the de-
sired analyte is also not used in the procedure of spectral
preprocessing to improve the multivariate calibration. Re-
cently, a new linear multivariate calibration method,
called hybrid linear analysis (HLA), was reported.15 It
incorporates the spectrum of the analyte of interest into
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the calibration and achieves better prediction accuracy
than PLS. Work in our laboratory is focused on the study
of biological samples by spectroscopy. The pure spec-
trum of various analytes of interest can easily be mea-
sured. In view of the poor prediction accuracy of PLS
under circumstances where the desired signal to interfer-
ing background ratio (SBR) is small in the spectral data
of the biological analyte mixture, such as serum,4 we pro-
pose a digital � ltering method, which enhances the SBR,
before applying the PLS calibration. Here, the � lter is
designed by taking advantage of knowing both the pure
spectrum of the desired analyte and the spectra of the
biological analyte mixtures. This study was motivated by
the work reported in Refs. 5, 6, and 15.

Mathematically, an optimization problem can be for-
mulated to maximize the SBR after the � ltering is applied
to the raw spectral data:

\ f (k) · s(k)\
min (1)

\ f (k) ·p (k)\f (k)

subject to s(k) ¾ p(k), where k is the variable, f (k) is
the impulse response of the optimal � lter, s(k) is a raw
spectrum of the sample, and p(k) is the pure spectrum of
the desired analyte in the sample. The variable s(k) is a
good approximation to the interfering background when
p(k) is much smaller than s(k). To design a � lter for PLS
calibration, the optimization must be applied to all the
spectra in the calibration set as follows:

N \ f (k) · ŝ (k)\imin or (2)O
\ f (k) · p̂ (k)\f (k) i51

\ f (k) · ŝ (k) \
min (3)

\ f (k) · p̂ (k)\f (k)

where ŝ i(k) 5 s i(k)/\s i(k)\ and p̂(k) 5 p(k)/\p(k)\ are the
normalized spectrum of the ith sample and normalized
pure spectrum, respectively. ŝ(k) is the mean spectrum of
all the normalized spectra in the calibration set. N is the
number of samples. Here, each spectrum in the calibra-
tion set was equally weighted in the optimization by us-
ing the normalized spectra instead of the raw ones. In the
frequency domain, the optimization problem becomes

jv jv\ f (e ) · ŝ(e ) \
min (4)

jv jvj v \ f (e ) · p̂ (e )\f (e )

In principle, if the Fourier frequency distributions of the
desired signal and the interfering background are differ-
ent, the SBR must have local maxima at a few certain
frequency bands. Therefore, an optimal � lter of multiple
frequency bands, at which SBR reaches a maximum, can
be built to preprocess the raw spectra and enhance the
SBR for PLS calibration. The calibration results based on
the � ltered spectral data are expected to be improved.

EXPERIMENTAL

Instrumentation. The Near-IR Raman spectra were
recorded with a single-stage holographic grating imaging
spectrograph (model No. HoloSpec f /1.8i, Kaiser Optical
Systems, Inc.), equipped with a liquid nitrogen cooled
CCD with 400 3 1340 pixels (Model LN/CCD-1340/
400-EB/1, RS Roper Scienti� c) and a diode laser (Model
PI-ECL-745-300, Process Instruments, Inc.) of wave-

length 745 nm and output of 150 mW as an excitation
source. The Raman cell was a home-made disposable
quartz capillary of inner diameter ranging from 250 to
300 mm and length of 20 mm. The laser was conducted
into the capillary with a 100 mm diameter optical � ber.
The excitation light was totally guided by the capillary
when it was � lled with the aqueous sample. The Raman
signal was collected with two multiple optical � ber arrays
at right angles to the capillary. The � ber arrays were
placed along the capillary. The distance from the distal
tips of the � bers to the capillary was about 200 mm. The
other ends of the � bers were combined and lined up at
the entrance of the spectrograph to form an entrance slit.
The Raman signals from the � bers were dispersed by the
spectrograph with a wavenumber resolution of 20 cm21.
Raman spectra were then formed by binning over 400
pixels of the CCD vertically.

Reagents and Procedures. The three groups of sam-
ples used in this work were: (1) four aqueous stock so-
lutions of pure glucose, urea, ethanol, and acetamino-
phen; (2) a set of mixtures of the four analytes in phos-
phate-buffered saline (PBS); and (3) a set of mixtures of
the four analytes in the aqueous phosphate buffer matrix
containing triactin, bovine serum albumin, and globulin
for the simulation of human serum. Glucose and urea are
important metabolites. Ethanol and acetaminophen are
potentially toxic substances when their concentrations in
blood are high. The triactin, bovine serum albumin, and
globulin were used to model triglycerides and total pro-
teins in the blood, respectively.6 The metabolites in the
second and third group of samples were present in levels
spanning the human physiological range. The concentra-
tion range of ethanol and acetaminophen covered their
toxic levels in human blood. All the analytes used in
preparation of the samples were reagent grade and pur-
chased from Sigma Chemical Co., St. Louis, MO.

The four stock solutions in the � rst group of samples
were used to measure the pure Raman spectra of glucose,
urea, ethanol, and acetaminophen. The mean physiolog-
ical levels of glucose and urea in normal adult serum are
4.6 mM and 4.4 mM, respectively.16 The toxic levels of
ethanol and acetaminophen in human serum are 21.7 mM
and 1.3 mM, respectively.17 To ensure the extraction of
the pure spectrum with high signal-to-noise ratio (SNR)
for the development of multiple band-pass � lters, con-
centrations of the four analytes were higher than their
mean physiological levels and toxic levels. Speci� cally,
the concentrations of glucose, urea, ethanol, and acet-
aminophen were 30 mM, 30 mM, 100 mM, and 30 mM,
respectively. The second group of samples was thirty
mixtures of glucose, urea, ethanol, and acetaminophen in
PBS. Glucose, urea, ethanol, and acetaminophen in the
stock solutions were prepared at thirty levels spanning
the range 1–11 mM, 2–10 mM, 0–46 mM, and 0–10
mM, respectively. The concentrations of the four individ-
ual analytes were randomized in each sample to eliminate
possible correlation in the samples. The Raman spectra
recorded from the second group of samples were used in
the PLS calibration for glucose, urea, ethanol, and acet-
aminophen. The calibration results should then set the
accuracy limits of Raman tests on the four analytes in
the mixture without interference from proteins and tri-
glyceride. The third group of samples was used for the
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FIG. 1. Raman spectra of thirty mixtures of glucose, urea, ethanol, and
acetaminophen in PBS.

FIG. 2. Raman spectra of simulated serum samples.

FIG. 3. Pure Raman spectra of (A) glucose, (B) urea, (C) ethanol, and
(D ) acetaminophen.

multivariate calibration of glucose, urea, ethanol, and
acetaminophen in simulated human serum. Thirty stock
solutions were prepared by mixing glucose, urea, ethanol,
acetaminophen, triactin, albumin, and globulin in PBS.
Concentrations of glucose, urea, ethanol, and acetamin-
ophen were in the same range as the second group of
samples. The concentrations of albumin, globulin, and
triactin were in the ranges 27–64 g/L, 20–40 g/L, and
0.5–5 g/L, respectively. Again, the concentrations of all
the analytes in each sample were randomly set.

Experimental Spectra. The near-IR Raman spectra of
the stock solutions in the second and third groups of sam-
ples are shown in Figs. 1 and 2. For each sample, a Ra-
man spectrum was acquired in 10 s. The wavelength
range of a full spectrum was from 350 to 4000 cm21. The
recorded spectral data were processed with a 5-point ad-
jacent averaging � lter to remove the high frequency noise
and preserve the spectral features. All spectra used in the
calibration were normalized to the strong water peak at
3350 cm21 to eliminate errors caused by the variation of
sample volume and excitation/collection conditions from
measurement to measurement. The � uctuations of the
spectra in the range from 350 cm–1 to 3000 cm–1 were
mainly caused by the thickness variation of the walls of
the Raman cells because the cells were homemade in the
department glassblowing facility and the capillary size
could not be well controlled.

The pure spectra of glucose, urea, ethanol, and acet-
aminophen were obtained by subtracting the PBS spec-
trum from the spectra collected from the � rst group of
stock solutions. To ensure the accurate extraction of the
pure spectrum, the same Raman cell was used to measure
the spectra of PBS and the four stock solutions. The spec-
tra were acquired over 60 s. Figures 3A–3D show the
pure spectra of glucose, urea, ethanol, and acetamino-
phen.

RESULTS AND DISCUSSION

PLS calibration and prediction were performed sepa-
rately on the spectra collected from the second and third
groups of stock solutions. Thirty spectra in each group
were used for the calibration. A cross-validation based
on the leave-one-out procedure was employed in which
29 spectra were used to develop the calibration model to
predict the concentrations of the desired analytes in the
omitted sample. Each spectrum was rotated out in turn.

The prediction accuracy was evaluated by computing the
root mean squared error of prediction (RMSEP) for the
30 rounds of cross-validations. This gave an estimate of
the average prediction ability for the PLS models built
on 29 samples.

The predictions of concentrations of glucose, urea, eth-
anol, and acetaminophen in the two groups of samples
are shown in Figs. 4A– 4D. Here, we observe that the
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FIG. 4. PLS prediction plots for (A) glucose, (B) urea, (C) ethanol, and (D ) acetaminophen. The solid squares represent the predicted concentration
vs. actual concentration in the mixtures of the four analytes. The open squares represent the predictions in simulated sera.

prediction errors for the four analytes obtained in the sec-
ond group of samples are signi� cantly lower than that in
the third group of samples. This demonstrates once again
that the presence of proteins and triactin contributes to
the errors of PLS calibration for glucose, urea, ethanol,
and acetaminophen as reported in Ref. 4.

To design an optimal � lter for the enhancement of SBR
and improvement of PLS calibration, we analyzed the
frequency characteristics of the pure spectra and the in-
terfering background. Figure 5 shows the normalized
Fourier transforms of the pure spectra and mean spectrum
of the calibration set. Their differential spectra are also
shown in the � gure. It is obvious that the frequency dis-
tributions of the desired analytes are different from that
of the interfering background. The major frequency com-
ponents for pure signals and background are distributed
in the range of the normalized frequency, from 0 to 0.15
Hz. Intuitively, the SBR at the frequency bands, where
p̂(e jv) is greater than ŝ(e jv), should be higher than that of
the raw signal. On the contrary, the SBR is poorer than
the raw signal in the frequency range where p̂(e jv) is low-
er than ŝ(e jv). The optimization problem then becomes to
build a � lter to select the frequency components with
high SBR and reject the components with low SBR.

An exhaustive search method was used to � nd the op-
timal � lter. The initial multiple band-pass � lter for the

search was de� ned by the function G(v) 5 {Sgn[ p̂(e jv)
2 ŝ(e jv)] 1 1}/2, which selects all the frequency bands
making SBR higher than that of the mean spectrum of
the calibration set. The components beyond the normal-
ized frequency of 0.15 Hz were cut off because their
contributions to the total signal are negligible. For this
research, the � nite impulse response (FIR) � lter, which
is a commonly used digital � lter with stable perfor-
mance,18 was used to form the multiple band-pass � lter.
One FIR � lter was employed in each single frequency
band. The G-function here determined the total number
of FIR band-pass � lters used and the frequency range for
each FIR band-pass � lter. During the optimization, the
bandwidth and central frequency of each FIR � lter was
allowed to change. In detail, the bandwidth and central
frequency are de� ned by a pair of uniformly distributed
random numbers with the criteria that the FIR � lter must
be in its corresponding frequency range determined by
the G-function. The optimal � lter was found under the
condition that the PLS model based on the � ltered cali-
bration set produced the lowest RMSEP of cross-vali-
dation. The exhaustive search needs a computation time
of up to a few days with a PC depending on the total
number of frequency bands for the FIR � lter set.

The optimal � lters for glucose, urea, ethanol, and acet-
aminophen are shown in the Fig. 6. The differential spec-
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FIG. 5. Fourier transforms of pure spectrum, p̂(e jv), mean spectrum of calibration set, ŝ(e jv), and differential spectrum, p̂(e jv) 2 ŝ(e jv). (A, B) p̂(e jv)
and p̂(e jv) 2 ŝ(e jv) for glucose. (C, D ) p̂(e jv) and p̂(e jv) 2 ŝ(e jv) for urea. (E, F) p̂(e jv) and p̂(e jv) 2 ŝ(e jv) for ethanol. (G, H) p̂(e jv) and p̂(e jv) 2
ŝ(e jv) for acetaminophen. The dotted lines represent the Fourier transform of background ŝ(e jv).
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FIG. 6. Optimal multiple band-pass � lter (solid lines) for (A) glucose,
(B) urea, (C) ethanol, and (D ) acetaminophen. The differential spectra
(dotted lines) are scaled up for better illustration of the high SBR bands
and low SBR bands.

FIG. 7. Optimally � ltered calibration set and pure spectra. (A) Cali-
bration set and pure glucose spectrum processed by the optimal � lter
for glucose. (B) Calibration set and pure urea spectrum processed by
the � lter for urea. (C) Calibration set and pure ethanol spectrum pro-
cessed by the � lter for ethanol. (D ) Calibration set and pure acetamin-
ophen spectrum processed by the � lter for acetaminophen. The � ltered
pure spectra are offset and scaled up for clarity.

tra between the Fourier transforms of pure spectra and
the background are displayed as dotted lines, as the ref-
erences. It is not surprising that the frequency bands cov-
ered by the optimal multiple band-pass � lters are almost
the same to those de� ned by the G-function. This means
that the optimal � lter preserves most of the frequency
components with the SBR higher than the raw data and
rejects the components with the SBR lower than the raw
data. The � ltered spectra of the calibration set and the
pure spectra are shown in Fig. 7. We found that most of
the features of the pure spectra remain the same after
� ltering. However, the variance of the � ltered spectra has
been signi� cantly reduced compared with the raw spectra
shown in Fig. 2.

A side by side comparison of PLS and MFPLS pre-

dictions for glucose, urea, ethanol, and acetaminophen in
the simulated sera are displayed in Fig. 8. Here, we ob-
serve that the � ltering method substantially improved the
prediction accuracy of the PLS calibration for all four
analytes. Table I summarizes the RMSEP and r 2 values
for glucose, urea, ethanol, and acetaminophen generated
by PLS and MFPLS in the simulated sera. The RMSEP
and r 2 values produced by PLS in the mixtures of the
four analytes are presented as the limits of prediction ac-
curacy. As can be seen, the MFPLS gives lower RMSEP
values in the prediction of each of the four analytes. The
RMSEP values obtained by MFPLS are comparable with
those produced by PLS in the mixtures of the four an-
alytes. The results are consistent with our expectation that
optimal � ltering improves PLS calibration by enhancing
the SBR and suppressing the confounding of desired sig-
nals by proteins, the major interferants.
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FIG. 8. MFPLS and PLS prediction plots for (A) glucose, (B) urea, (C) ethanol, and (D ) acetaminophen. The solid squares represent the MFPLS
predictions and the open squares represent the PLS predictions.

TABLE I. Comparison of RMSEP and r 2 for PLS and MFPLS.

RMSEP values (mM)

PLS MFPLS Ref.a

r 2 values

PLS MFPLS Ref.a

Glucose
Urea
Ethanol
Acetaminophen

1.0
0.80
4.9
0.74

0.52
0.42
2.7
0.36

0.41
0.35
2.1
0.3

0.90
0.88
0.89
0.93

0.97
0.97
0.97
0.99

0.99
0.98
0.98
0.99

a The RMSEP and r 2 values obtained from the PLS calibration on the
spectra measured in the mixtures of glucose, urea, ethanol, and acet-
aminophen in PBS.

In conclusion, we have demonstrated in this study that
MFPLS is a method superior to the standard PLS. The
results indicate that the interference confounding the PLS
calibration can be effectively reduced by applying the
multiple band-pass � ltering to the raw data, and the pre-
diction accuracy has been increased. The MFPLS uses
the information concerning the desired analyte and the
pure spectrum as the guide for identifying the frequency
components of high SBR and designing the optimal mul-
tiple band-pass � lter. This advantage makes the optimi-
zation procedure more effective and the optimal � lter
more intuitive and robust. It should be noted that only
the frequency characteristics of the the pure signal are
required for development of the optimal � lter. The error
in the measurement of the amplitude of pure signal does
not affect the performance of MFPLS. Here, the infor-
mation extracted from the pure spectrum is used to guide
the search for the optimal multiple band-pass � lter. The
method is thus not sensitive to the slight modulation in
characterization of the pure spectrum by the solution ma-
trix, as is HLA.

The MFPLS requires the clear difference in frequency
characteristics between the desired signal and interfering
signal to build a multiple band-pass � lter to enhance the
SBR. In general, the small and simple molecules with a

few sharp and distinct Raman peaks, such as those in-
vestigated in this study, consist of more high frequency
components than the uninformative background. Thus,
the Raman spectroscopy satis� es the requirements of
MFPLS. However, there may be some limitations to ex-
tending the MFPLS method to other spectroscopic tech-
niques that provide smooth and broadened molecular
spectra. For instance, the IR spectra of most molecules
are broad, which mostly contributes to low frequency
bands as interfering background. It may be more dif� cult
to identify the bands of high SBR. The ef� cacy of
MFPLS calibration on IR spectra may then be affected.
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