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Abstract. An aglorithm based on support vector machines (SVM), the
most recent advance in pattern recognition, is presented for use in
classifying light-induced autofluorescence collected from cancerous
and normal tissues. The in vivo autofluorescence spectra used for
development and evaluation of SVM diagnostic algorithms were mea-
sured from 85 nasopharyngeal carcinoma (NPC) lesions and 131 nor-
mal tissue sites from 59 subjects during routine nasal endoscopy.
Leave-one-out cross-validation was used to evaluate the performance
of the algorithms. An overall diagnostic accuracy of 96%, a sensitivity
of 94%, and a specificity of 97% for discriminating nasopharyngeal
carcinomas from normal tissues were achieved using a linear SVM
algorithm. A diagnostic accuracy of 98%, a sensitivity of 95%, and a
specificity of 99% for detecting NPC were achieved with a nonlinear
SVM algorithm. In a comparison with previously developed algo-
rithms using the same dataset and the principal component analysis
(PCA) technique, the SVM algorithms produced better diagnostic ac-
curacy in all instances. In addition, we investigated a method com-
bining PCA and SVM techniques for reducing the complexity of the
SVM algorithms. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1628244]
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1 Introduction
Cancer is a leading cause of death worldwide. Over the pas
two decades, the promise that optical techniques may offe
new medical diagnostic tools for detecting cancerous tissue
has stimulated a great deal of research. Autofluorescenc
spectroscopy is one of the primary research areas in whic
rapid progress has been achieved. It has been demonstrat
that technologies utilizing the information carried in the en-
dogenous fluorescence of tissue~autofluorescence! can be par-
ticularly suitable for noninvasive diagnosis of malignant and
preclinical lesions because the characteristics of autofluore
cence are directly linked to tissue biochemistry and
architecture.1–3 The key step in spectroscopic diagnosis of tis-
sue is to build a robust algorithm that extracts characteristi
features from autofluorescence spectral signals and correlat
these features with tissue pathology. The autofluorescenc
spectral signal is a multivariate function of wavelengths. To
minimize the loss of clinically useful information in autofluo-
rescence signals, a multivariate statistical method should b
used to recognize the spectral characteristics for the develo
ment of diagnostic algorithms.

A variety of multivariate statistical algorithms have been
successfully utilized in the spectroscopic diagnosis of tissue
For example, O’Brien et al.4 used principal component analy-
sis ~PCA! and multivariate linear regression~MLR! methods
for guided angioplasty using fluorescence spectroscopy. Ra
manujam et al.5 developed PCA algorithms for improving the
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diagnosis capability of fluorescence spectroscopy in the de
tion of cervical intraepithelial neoplasia. Wang et al.6 and
Eker et al.7 used the partial least-squares~PLS! method to
build algorithms for classifying the autofluorescence spec
signals recorded from normal and cancerous tissues in the
cavity and larynx. In nonlinear approaches, Tumer et al.8 re-
ported on a classifier using radial basis function networks
diagnose early cervical lesions. Rovithakis et al.9 used artifi-
cial neural networks to analyze autofluorescence and to
criminate pathological from normal peripheral vascular tiss

In previous studies, we investigated thein vivo autofluo-
rescence of nasopharyngeal carcinoma~NPC! and normal
tissue.10,11 NPC is common among Southeast Asians and m
occur at any age. Successful treatment is possible when N
is detected in its early stages. White-light endoscopy is
currently available detection method, but it produces poor
agnostic accuracy for flat or small lesions and the identifi
tion of tumor margins in advanced stages of NPC. The co
mon practice for diagnosing subclinical tumors in the hig
risk group is through random endoscopic biopsy. Howev
only 5.4% of patients from the high-risk group have be
shown to have asymptomatic NPC in random biopsies of
nasopharynx. The results of our investigation have dem
strated thatin vivo autofluorescence spectra of NPC and n
mal nasopharyngeal tissues are different and that the di
ence can be used to discriminate NPC from normal tissue.10,11
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Classification of in vivo autofluorescence spectra . . .
Simple algorithms using the autofluorescence signals in a few
wavelength bands and algorithms based on the PCA metho
have been developed for diagnosing NPC.

The goal of this study is to explore a new technique for
developing diagnostic algorithms with improved accuracy for
classifying autofluorescence from NPC and normal tissuein
vivo. Specifically, we present the development and evaluatio
of new classifiers for autofluorescence using linear and non
linear support vector machine~SVM! algorithms, the most
recent advance in the field of pattern recognition. The possi
bility of building a simple algorithm and improving its diag-
nostic performance with a combination of PCA and SVM
methods is investigated.

2 Materials and Methods

2.1 Support Vector Machine Algorithms
A support vector machine is a new method for classifying
multivariate data. It was first proposed by Vapnik12,13and suc-
cessfully extended by a number of other researchers in rece
years.14–16 It is based on the principle of minimization of
structural risk in constructing an optimally separating hyper-
plane that separates different classes of data. When the sep
rating boundary is nonlinear, SVM maps the sample data with
specific kernel functions to a higher dimensional feature spac
to linearize the boundary and generate the optimal separatin
hyperplane. Compared with other multivariate statistical
methods, SVM was designed to be particularly effective in
developing a reliable classifier from a training set with a smal
sample size.13 In addition, no assumption about the statistical
properties of the classified data is made when developing th
SVM classification algorithm.

SVM has become a rapidly emerging technique in the clas
sification of data in the past 5 years. In particular, the appli-
cations of SVM techniques have been recently extended to th
processing of biological and medical data. For example, SVM
has been successfully applied in cellular protein studies an
gene selection for cancer classification,17–19 image processing
of digital mammograms, and computer-aided detection of le
sions in computer tomography~CT!,20,21 detection of cancer
using microarray expression data and signatures,22–24 and the
detection and screening of diseased tissue based on featu
screening.25,26

The detailed theory of the SVM method is described in
Refs. 12–16. Briefly, SVM maps the sample data linearly or
nonlinearly to a high-dimensional feature space. The hyper
plane optimally separating two classes of data is given as a
expansion on a small number of sample data in the trainin
set known as support vectors that are always the closest to th
optimal hyperplane. The support vectors correspond to th
training samples that are most difficult to classify. Mathemati-
cally, a hyperplane is defined byw3x1b50 in the feature
space of sample data, wherew is the norm to the hyperplane
and b is a plane constant. Given a set of labeled training
samples$xi ,yi%, i 51,...,l y iP$21,11%, xiPRn. Here l and
n are the number and dimension of the sample vectors, re
spectively. Suppose that a hyperplane can separate the po
tive samples (yi511) from the negative samples(yi

521) in the feature space of sample data; thenyi(w3xi

1b)21>0. The margin of a separating hyperplane, defined
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as the sum of the shortest distances from the positive
negative samples to the hyperplane, equals2/iwi . The SVM
algorithm is simply looking for an optimal hyperplane wit
the maximal separating margin by

minimizing
iwi2

2
, subject to yi~w3xi1b!21>0.

~1!

When two classes of training samples are not linearly se
rable, the constraint is relaxed to allow misclassificatio
yi(w3xi1b)>12ji , j i>0. The optimization problem be-
comes

minimizing
iwi2

2
1C3( j i ,

subject to yi~w3xi1b!>12ji , ~2!

or

maximizing ( a i2
1

2 ( a j yiy j~xi ,xj !,

subject to ( a i yi50,,0<a i<C, ~3!

whereC is a parameter chosen by the user to define the c
of constraint relaxation. A largerC corresponds to a highe
penalty for the assigned errors. Eacha i is a Lagrange multi-
plier corresponding to a sample(xi ,yi) in the training set.
The optimization process determines support vectors that
the training sample vectors with nonzero Lagrange multip
ers. A linear SVM classifier can then be constructed us
these support vectors as

f ~x!5sgn~wTx1b! ~4!

or

f ~x!5sgnF(
i 51

m

a i yi~xi3x!1bG , a i.0, ~5!

wherem is the number of support vectors andx is the sample
to be classified.

If the separating boundary is nonlinear in the feature sp
of the data sample and the linear SVM classifier cannot se
rate the training data well, improved classification results m
be obtained using a nonlinear SVM method. Assuming
nonlinear separating boundary can be linearized in a hig
dimensional feature space using a mapping proce
F:Rn°H:Rn1v⇒x°F(x), a linear SVM classifier can be
constructed in the new feature space,H. Here,F is the map-
ping function andv is the increased dimension ofH space.
The inner product of two mapped vectors inH space can be
efficiently computed using kernel functionsK(xi ,xj )
5F(xi)•F(xj ) in the feature space of the sample data. N
that only the inner products between the sample data in
training set are needed to calculate the Lagrange multipl
and to identify the support vectors. Also, only the inner pro
ucts between the support vectors and the sample to be cl
fied are needed in the SVM classifier. Thus it is not necess
to use the explicit mapping function to identify support ve
tors and form the classifier in the new feature space of
of Biomedical Optics d January/February 2004 d Vol. 9 No. 1 181
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Lin et al.
creased dimensions. The power of the nonlinear SVM metho
is that with a known kernel function, the classification of non-
linearly separable samples can be simply performed in th
feature space of the sample data.

The nonlinear SVM classifier can be constructed as

f ~x!5sgnF(
i 51

m

a i yiK~xi ,x!1bG , a i.0. ~6!

The kernel functions used in constructing nonlinear SVM
classifiers are the polynomial function, the radial basic func-
tion ~RBF!, and the neural network function, etc.13–15 One of
the most used kernel functions in the reported work is the
RBF kernel defined asK(xi ,xj )5exp(2gixi2xji2). In this
work, the RBF kernel was used to construct nonlinear SVM
algorithms to classify thein vivo autofluorescence of normal
nasopharyngeal tissue and nasopharyngeal carcinoma.

2.2 In Vivo Autofluorescence Spectra
The autofluorescence spectral data used in this study are t
same as these used for the development of multiple
wavelength band ratio algorithms and PCA algorithms in our
previous work.11 A total of 216 autofluorescence spectral sig-
nals were measuredin vivo from 85 nasopharyngeal carci-
noma lesions and 131 normal tissue sites of 59 subjects durin
routine nasal endoscopy. The instrumentation of the measur
ment system was described in detail in a previous paper.10 The
excitation light was a mercury arc lamp filtered with a band-
pass filter with a bandwidth from 390 to 450 nm. The autof-
luorescence was excited primarily by the strong spectral line
of the mercury at 404.66 and 435.84 nm, which share the
same upper initial energy level,1S0 . The relative intensities
between the two strong spectral lines then remain constan
because the intensities are determined by their relative trans
tion probabilities and are independent of the operation condi
tions of the light source.

The autofluorescence and reflection of the excitation ligh
signals were collected from examined tissue by a Karl Storz
nasal endoscope and separated by a dichoic mirror with
cut-on wavelength at 470 nm. The fluorescence signals co
lected by the endoscope were conducted to a multichann
spectrometer with seven optical fibers that were evenly dis
tributed in the image plane of the endoscope. The spectrall
dispersed autofluorescence signals were recorded using
ICCD camera in the wavelength range from 470 to 680 nm
with an interval of 0.37 nm. In order to reduce the dimensions
of raw data, the spectra were smoothed using moving-window
filtering and the wavelength resolution was reduced to 1 nm
The final dimension of each spectral signal before further pro
cessing was 211.

The autofluorescence signals were collected from endo
scopically normal and abnormal sites for each subject. Two
autofluorescence spectra were recorded from each site in tw
different angles because the characteristics~intensity and line
shape! of autofluorescence signals are affected by the illumi-
nation and collection geometry. Normally, a total of four spec-
tra were collected from one subject except for a few cases i
which it was difficult to maneuver the endoscope to measur
fluorescence signals from the same tissue site at differen
angles. Biopsy specimens were taken from tissue sites from
182 Journal of Biomedical Optics d January/February 2004 d Vol. 9 No
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which the autofluorescence signals were collected. The hi
logical examinations of the biopsy samples, which served a
gold standard for labeling normal tissue with21 and for
labeling cancerous lesions with11, were performed by expe
rienced pathologists. Thein vivo autofluorescence spectros
copy measurements were conducted in the Departmen
Otorhinolaryngology at Queen Mary Hospital, The Univers
of Hong Kong. This study was approved by the universit
ethics committee.

3 Results and Discussion
Typical raw autofluorescence spectra collected from
sopharygeal carcinomas and normal tissuesin vivo are shown
in Figs. 1~a! and 1~b!. As can been seen, the intensities of t
raw signals vary across a wide range because of variation
measurement conditions~including illumination power, sepa
ration of endoscope from tissue, and incident or emiss
angles over the imaged tissue surface! from individual to in-
dividual and from measuring site to site for each individu
To eliminate the variations caused by the measurement c
ditions, each spectral signal was normalized to its area be
further processing. The normalized spectra from n
sopharygeal carcinomas and normal tissues are shown in
1~c! and 1~d!.

In the SVM learning and testing procedure, each spectr
was treated as a vector with 211 dimensions and labeled
cording to the result of the histological examination. Spec
cally, 131 normal samples were labeled as21 and 85 cancer-
ous samples were labeled as11. SVMl ight ~version 5.00!, an
implementation of support vector machines in C languag27

was used to process the normalized autofluorescence
Diagnostic algorithms based on linear and nonlinear SV
were developed. The performance of the SVM algorithms w
evaluated with the leave-one-case-out cross-validation. In
cross-validation procedure, spectral samples recorded f
one subject were held out from the whole dataset and
remaining samples were treated as a training set for deve
ing the SVM diagnostic algorithms to classify the withhe
autofluorescence spectra. The linear SVM algorithms de
oped from the training set were optimized by exhaustiv
searching the optimal value of parameterC. The optimization
criterion was to minimize the number of misclassified samp
or maximize the classification accuracy in the training set.
the exhaustive searching process, the initial value ofC was
set to the defaultC provided bySVMl ight that was calculated
with @Average(x,x)#21. Here,x consists of the sample vec
tors in the training set. Thus the initial value of parameterC
was related to the statistical property of the training datase
the nonlinear approach, an RBF kernel was used to cons
the diagnostic algorithm. Tuning the value of parameterg of
the RBF kernel, the optimal value of parameterC was deter-
mined by exhaustive searching with each selected value og.
The criterion for optimizing the algorithms in the training s
was the same as that used in linear SVM method.

The optimized algorithms developed from the training s
were used to classify the withheld spectral samples meas
from one subject. This procedure was repeated until all 2
samples collected from 59 subjects were classified. It sho
be noted that new algorithms were constructed using the
maining spectra recorded from 58 subjects as a training se
. 1



Classification of in vivo autofluorescence spectra . . .
Fig. 1 Autofluorescence spectra of nasopharyngeal carcinoma (NPC) and normal tissue. (a) Raw spectra from normal tissue. (b) Raw spectra from
NPC. (c) Normalized spectra from normal tissue. (d) Normalized spectra from NPC.
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every round of cross-validation. The overall classification ac-
curacy, sensitivity, and specificity of a particular algorithm
were calculated based on the classifications of the withhel
samples over 59 rounds of cross-validation.

The results of the classifications of all thein vivo autofluo-
rescence signals using linear and nonlinear SVM algorithm
are summarized in Table 1. As a reference, the best results
classifying the same dataset using the PCA algorithm reporte
in Ref. 11 are also included in the table. The results demon
strate that both the linear SVM algorithm and nonlinear SVM
algorithms performed better than the PCA algorithm. The lin-
ear SVM and RBF SVM algorithms were constructed with 38
and 70 sample vectors~or support vectors!, respectively. Fig-
ure 2 shows how the classification accuracy of a linear SVM
algorithm depends on the parameterC in a wide-range search
for optimal C. The algorithm was optimized by choosing the

Table 1 Results of classification of autofluorescence with different
algorithms.

Algorithm
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)

Linear SVM 94 97 96

Nonlinear SVM (RBF) 95 99 98

PCA (Ref. 11) 93 95 94
Journal
n

value of C that maximized classification accuracy for th
leave-one-case-out cross-validation.

In the development of nonlinear SVM algorithms, an o
timal C that maximizes classification accuracy can be de
mined for each selected value of the RBF parameterg. It was
found that the classification accuracy was not sensitive to
rameterg. In a wide range of values forC andg, many sets of
C andg could be found to yield the same classification acc
racy. Figure 3 shows the optimal sets ofC and g that pro-

Fig. 2 Dependence of classification accuracy on parameter C for a
linear SVM algorithm.
of Biomedical Optics d January/February 2004 d Vol. 9 No. 1 183
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Fig. 3 Optimal sets of parameters C and g obtained in the develop-
ment of a nonlinear SVM algorithm using an radial basic function
(RBF) kernel. The C and g sets shown in the figure produced the same
and maximal accuracy.
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duced the maximal classification accuracy in a training set
For both linear and nonlinear SVM algorithms, the classifiers
generated from the training sets over 59 rounds of cross
validations were stable and almost the same. It should b
noted that optimal parameters(C and g! determined by the
procedure of leave-one-case-out cross-validation may result
an optimistic bias.

As can be seen, the nonlinear SVM produced a sensitivity
and specificity higher than the linear SVM. This indicates that
the boundary separating autofluorescence from nasophary
geal carcinoma and that from normal tissue is not linear. The
spectral signals of some cancerous tissues cannot be clea
separated from those of normal tissues in the feature space
the spectral dataset. The linearization of the separating boun
ary by mapping the original spectral data to a high dimen-
sional space in the nonlinear SVM algorithms improves the
diagnostic accuracy.

The subjects enrolled in this study were all clinically sus-
picious patients exhibiting a nasopharyngeal abnormality en
doscopically. Endoscopic diagnosis of nasopharnygeal carc
noma is based on the fact that most of tumors show marke
racial and geometric variation. The biopsy must be taken from
an endoscopically identified tumorous tissue site for histologi
cal analysis. However, this criterion generates a significan
number of false positives, especially when the lesion is rela
tively flat. A clinical investigation showed that the sensitivity
and false positive rate of endoscopy with a single biopsy fo
detecting nasopharnygeal carcinoma was about 85 and 15%
respectively.28 Here, the false positive rate is defined as the
ratio of the number of false positives over the total number o
endoscopically identified tumorous tissue sites. In this study i
was found that 16 biopsies taken from 59 subjects showe
false positives. The false positive rate was about 27%. In con
trast to endoscopic diagnosis, only two false positives were
produced by the autofluorescence spectroscopy method. Th
sensitivity of the fluorescence method with the SVM algo-
rithm was up to 95%. Thus autofluorescence spectroscop
combined with conventional nasal endoscopy can substan
tially improve diagnostic accuracy.
184 Journal of Biomedical Optics d January/February 2004 d Vol. 9 No
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Finally, it also should be pointed out that the lesions stu
ied in this work were all invasive. Unlike other well
investigated organ sites, such as the lung, colon, and ce
dysplasia and carcinomain situ in the nasopharynx are rarel
reported.29–32 Over a period of 10 months of collection ofin
vivo autofluorescence spectra, we did not find a lesion of
sopharyngeal dysplasia and carcinomain situ.

The dimension of spectral data is generally high. For
stance, the autofluorescence spectrum used in this study
211 dimensions. The high dimension of data space may ca
complexity in optimization and implementation of the SVM
algorithm because computation of all the inner products
tween the sample and support vectors in a high-dimensio
feature space is complicated and time-consuming. This lim
the see of the SVM method in applications that require fas
even real-time data processing. We investigated the possib
of simplifying the implementation of the SVM algorithm an
improving its performance by reducing the dimensions of
spectral data using the PCA method.

Principal component analysis is a mathematical tool t
reduces the dimensions of a dataset to a set of informa
principal components~PCs! that account for most of the vari
ance of the original dataset. The first PC accounts for as m
of the variability in the dataset as possible, and each succ
ing component accounts for as much of the residual varia
ity as possible. Therefore the PCs are normally arranged in
order of their contributions to the variance of entire dataset
principle, PCA is an operation that rotates the coordinates
the original data to form new coordinates using the PCs. M
of the information carried in the data is distributed in the fi
few PCs of the new coordinates. The contributions from
rest of the PC coordinates are negligible. By presenting
original data in new PC coordinates formed with a few info
mative PCs, the dimensions of the data can be significa
reduced without losing important information. The impleme
tation of SVM algorithms in a data space with a much low
dimension should be more efficient and consume less tim

When PCA is used to process autofluorescence spect
transforms wavelengths, the original spectral variables, in
set of PC spectra. Each original spectrum is a combination
the PC loading spectra that are orthogonal to each other.
PCs with negligible contributions to the variance of th
dataset are eliminated. The dimensions of the dataset for
veloping the diagnostic algorithm can then be significan
reduced without losing useful information. Figure 4 shows
contribution of each PC to the variance of the 216 autoflu
rescence spectra. The PCs were calculated with a MATLA
based PCA program. As shown in the figure, the first two P
account for 86.4% of the total variance; the first five P
account for 97%; the first ten PCs account for 98.5%; and
first twenty PCs account for 99.5%.

Linear and nonlinear SVM algorithms were developed u
ing the projection scores of the autofluorescence spectra
PC loadings. The performance of the linear SVM algorith
with different numbers of PCs was compared with the resu
obtained from the spectral data in wavelength space show
Table 1. We found that the linear SVM algorithm with the fir
two PCs produced a sensitivity of 94% and a specificity
97% in differentiating NPC from normal tissue. This accura
is identical to that achieved by the linear SVM algorithm
the wavelength space of 211 dimensions. The performanc
. 1
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Fig. 4 Contributions of principal components to the total variance of
216 spectral data.
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the linear SVM algorithm was not improved by adding more
PCs. This demonstrates that the first two PCs captured all th
information necessary for classifying the linearly separable
samples. It indicates that linear SVM algorithms developed in
two-dimensional PC space are equivalent to those develope
from the autofluorescence spectral data. The complexity of th
linear SVM algorithm using two PC scores was tremendously
reduced because the PCA method decreased the dimension
the data from 211 to 2. Also, the combined PCA and linear
SVM methods produced a classification accuracy that wa
better than that of the PCA algorithms reported in our previ-
ous study.11

The results of implementing nonlinear SVM with PC
scores are summarized in Table 2. The results with the firs
two PCs are identical to those of the linear SVM algorithm.
The classification accuracy begins to increase by adding up t
six PCs. The maximal accuracy is achieved when the first nin
PCs are used. This result is identical with the best result ob
tained from the nonlinear SVM algorithm using the spectral
data in the wavelength space of 211 dimensions. The perfo
mance of the nonlinear SVM algorithm was not improved
further by adding more than nine PCs. This indicates that th
first two PCs contribute to the classification of linearly sepa-
rable samples, and the PCs from six to nine capture the majo
information needed to classify the nonlinearly separable
samples. With the combined PCA and nonlinear SVM meth-

Table 2 Performance of nonlinear SVM algorithms using principal
component scores.

Number of
Principal Components

Number of
Support Vectors

Sensitivity
(%)

Specificity
(%)

2 86 94 97

6 38 94 98

9 52 95 99

210 60 95 99
Journal
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ods, the dimensions of the data were reduced from 211 to
is important to note that the numbers of support vectors u
in the SVM algorithms with six and nine PCs are also le
than those of SVM algorithms using spectral data in wa
length space. This demonstrates that the PCA method can
stantially simplify SVM algorithm without sacrificing diag
nostic accuracy.

4 Conclusions
Linear and nonlinear SVM methods were successfully imp
mented for the classification of autofluorescence signals fr
nasopharyngeal carcinomas and normal tissues. The re
demonstrate that autofluorescence spectroscopy with an S
algorithm can achieve high diagnostic accuracy in differen
ating nasopharyngeal carcinoma from normal tissue. Co
pared with the previously developed algorithms using
same dataset and the principal component anal
technique,11 the SVM algorithms produced better diagnos
accuracy in all instances. In principle, a statistical comparis
is desirable to evaluate the performance of different al
rithms. However, such an analysis requires an accurate
mate of the statistical properties of a dataset to draw a relia
conclusion. This cannot be done when the size of the dat
is small, such as that used in this study.

Combined PCA and SVM methods were investigated
was found that SVM and combined PCA and SVM algorithm
produced the same diagnostic accuracy. PCA can substan
reduce the complexity of an SVM algorithm without sacrifi
ing the performance of the algorithm. The simplification
the algorithm is particularly important for applications th
require rapid processing of a large amount of multivaria
data, as in real-time multispectral imaging and optical p
cessing systems.33,34 It is an interesting finding that SVM can
help to identify the PCs that carry the information headed
classifying linearly or nonlinearly separable samples, wh
provide important statistical properties of multivariate da
samples. Finally, it should be noted that using leave-one-
cross-validation is common for small datasets, but indep
dent training-validation and test sets are more desirable f
study with a large volume of samples.
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