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Classification of in vivo autofluorescence spectra using
support vector machines
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1 Introduction diagnosis capability of fluorescence spectroscopy in the detec-

Cancer is a leading cause of death worldwide. Over the pasttion ©f cervical intraepithelial neoplasia. Wang efand

7 .
two decades, the promise that optical techniques may offerEk_Tdr elt al._tﬁsed fthe Ipart_lal_ Ieatlﬁt-squta;léBLS) method tot |
new medical diagnostic tools for detecting cancerous tissues uild algorithms for classifying the autofluorescence spectra

has stimulated a great deal of research. Autofluorescences'gr?als recorded from normal and cancerous tissues in the oral

. . - . “cavity and larynx. In nonlinear approaches, Tumer &trak

spectroscopy is one of the primary research areas in which o . : . .

] . orted on a classifier using radial basis function networks to
rapid progress has been achieved. It has been demonstrateg. : . . is ot i
that technologies utilizing the information carried in the en- lagnose early cervical lesions. Rovithakis et abed artifi- .
dogenous fluorescence of tissatofluorescendan be par- cial neural networks to analyze autofluorescence and to dis-
109 . X . . ) oep criminate pathological from normal peripheral vascular tissue.
ticularly suitable for noninvasive diagnosis of malignant and

linical lesi b the ch toristi ¢ autofl In previous studies, we investigated timevivo autofluo-
preclinical lesions because the characteristics of autofluores-ogcance of nasopharyngeal carcinothC) and normal

cence are directly linked to tissue biochemistry and <q 0% NPC is common among Southeast Asians and may
architecture™* The key step in spectroscopic diagnosis of tis- ey at any age. Successful treatment is possible when NPC
sue is to build a robust algorithm that extracts characteristic j5 getected in its early stages. White-light endoscopy is the
features from autqfluorescence spectral signals and correlateg,rrently available detection method, but it produces poor di-
these features with tissue pathology. The autofluorescenceagnostic accuracy for flat or small lesions and the identifica-
spectral signal is a multivariate function of wavelengths. To tion of tumor margins in advanced stages of NPC. The com-
minimize the loss of Clinica”y useful information in autofluo- mon practice for diagnosing subclinical tumors in the h|gh_
rescence signals, a multivariate statistical method should berisk group is through random endoscopic biopsy. However,
used to recognize the spectral characteristics for the develop-omy 5.4% of patients from the high-risk group have been
ment of diagnostic algorithms. shown to have asymptomatic NPC in random biopsies of the
A variety of multivariate statistical algorithms have been nasopharynx. The results of our investigation have demon-
successfully utilized in the spectroscopic diagnosis of tissue. strated thatn vivo autofluorescence spectra of NPC and nor-
For example, O’'Brien et dlused principal component analy- mal nasopharyngeal tissues are different and that the differ-
sis (PCA) and multivariate linear regressigMLR) methods ence can be used to discriminate NPC from normal tigstfe.
for guided angioplasty using fluorescence spectroscopy. Ra-
manujam et af.developed PCA algorithms for improving the  1083-3668/2004/$15.00 © 2004 SPIE
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Simple algorithms using the autofluorescence signals in a fewas the sum of the shortest distances from the positive and

wavelength bands and algorithms based on the PCA methodnegative samples to the hyperplane, eq@d)e/|. The SVM

have been developed for diagnosing NPC. algorithm is simply looking for an optimal hyperplane with
The goal of this study is to explore a new technique for the maximal separating margin by

developing diagnostic algorithms with improved accuracy for

classifying autofluorescence from NPC and normal tigsue o Iw)? )
vivo. Specifically, we present the development and evaluation ~ MiNIMIzINg——, subject toy;(wXx;+b)—1=0.
of new classifiers for autofluorescence using linear and non- (1)

linear support vector machingSVM) algorithms, the most . .
recent advance in the field of pattern recognition. The possi- "When two classes of training samples are not linearly sepa-

bility of building a simple algorithm and improving its diag- rable, the constraint is relaxed to allow misclassification:
nostic performance with a combination of PCA and SYM Yi(WXXi+b)=1—¢,, &=0. The optimization problem be-

methods is investigated. comes

——

minimizing——+CX P

2 Materials and Methods 92 26
2.1 Support Vector Machine Algorithms subject toy;(wxx;+b)=1-§,, 2
A support vector machine is a new method for classifying or
multivariate data. It was first proposed by Vaprik and suc- 1
cessfully extended by a number of other researchers in recent maximizing 2 aj— 52 @YY (Xi ,Xj),

years*~10 It is based on the principle of minimization of

structural risk in constructing an optimally separating hyper-

plane that separates different classes of data. When the sepa- subject to 2 a;y;=0,,0=a;<C, 3
rating boundary is nonlinear, SVM maps the sample data with

specific kernel functions to a higher dimensional feature spacewhereC is a parameter chosen by the user to define the cost
to linearize the boundary and generate the optimal separatingof constraint relaxation. A large€ corresponds to a higher
hyperplane. Compared with other multivariate statistical penalty for the assigned errors. Eaghis a Lagrange multi-
methods, SVM was designed to be particularly effective in plier corresponding to a samplg;,y;) in the training set.
developing a reliable classifier from a training set with a small The optimization process determines support vectors that are
sample sizé? In addition, no assumption about the statistical the training sample vectors with nonzero Lagrange multipli-
properties of the classified data is made when developing theers. A linear SVM classifier can then be constructed using

SVM classification algorithm. these support vectors as
SVM has become a rapidly emerging technique in the clas-
sification of data in the past 5 years. In particular, the appli- f(x)=sgnw'x+b) (4)

cations of SVM techniques have been recently extended to the
processing of biological and medical data. For example, SVM
has been successfully applied in cellular protein studies and m
gene selection for cancer classificatidn®image processing f(x)=sgr{2 @Yi(XiXx)+b
of digital mammograms, and computer-aided detection of le- =1
sions in computer tomographiT),2?! detection of cancer ~ wherem is the number of support vectors ards the sample
using microarray expression data and signatéfed,and the to be classified.
detection and screening of diseased tissue based on feature If the separating boundary is nonlinear in the feature space
screening>2° of the data sample and the linear SVM classifier cannot sepa-
The detailed theory of the SVM method is described in rate the training data well, improved classification results may
Refs. 12—16. Briefly, SVM maps the sample data linearly or be obtained using a nonlinear SVM method. Assuming the
nonlinearly to a high-dimensional feature space. The hyper- nonlinear separating boundary can be linearized in a higher
plane optimally separating two classes of data is given as andimensional feature space using a mapping process:
expansion on a small number of sample data in the training ®:R"—>H:R""'=x—>®d(x), a linear SVM classifier can be
set known as support vectors that are always the closest to theconstructed in the new feature spakke,Here,® is the map-
optimal hyperplane. The support vectors correspond to the ping function andv is the increased dimension &f space.
training samples that are most difficult to classify. Mathemati- The inner product of two mapped vectorshhspace can be
cally, a hyperplane is defined byXx+b=0 in the feature efficiently computed using kernel functions(x;,x;)

y ai>ov (5)

space of sample data, wheseis the norm to the hyperplane  =®(x;) - ®(x;) in the feature space of the sample data. Note
and b is a plane constant. Given a set of labeled training that only the inner products between the sample data in the
samplesx;,yi}, i=1,..) yie{—1,+1}, x;eR". Herel and training set are needed to calculate the Lagrange multipliers

n are the number and dimension of the sample vectors, re-and to identify the support vectors. Also, only the inner prod-
spectively. Suppose that a hyperplane can separate the posiucts between the support vectors and the sample to be classi-
tive samples(y;=+1) from the negative samplegy; fied are needed in the SVM classifier. Thus it is not necessary
=—1) in the feature space of sample data; thgtwXx; to use the explicit mapping function to identify support vec-
+b)—1=0. The margin of a separating hyperplane, defined tors and form the classifier in the new feature space of in-
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creased dimensions. The power of the nonlinear SVM method which the autofluorescence signals were collected. The histo-

is that with a known kernel function, the classification of non- logical examinations of the biopsy samples, which served as a

linearly separable samples can be simply performed in the gold standard for labeling normal tissue withl and for

feature space of the sample data. labeling cancerous lesions with1, were performed by expe-

The nonlinear SVM classifier can be constructed as rienced pathologists. Th vivo autofluorescence spectros-

copy measurements were conducted in the Department of
Otorhinolaryngology at Queen Mary Hospital, The University

, a;>0. (6) of Hong Kong. This study was approved by the university’s
ethics committee.

m
f(x)zsgr‘[i_zl a;y;iK(X;,X)+b
The kernel functions used in constructing nonlinear SVM
classifiers are the polynomial function, the radial basic func- . .
tion (RBF), and the neural network function, étc°0One of 3 Results and Discussion
the most used kernel functions in the reported work is the Typical raw autofluorescence spectra collected from na-
RBF kernel defined a&(x; ,xj)=exp(—y1|xi—xj||2). In this sopharygeal carcinomas and normal tissmegvo are shown
work, the RBF kernel was used to construct nonlinear SVM in Figs. 1a) and Xb). As can been seen, the intensities of the
algorithms to classify thén vivo autofluorescence of normal  raw signals vary across a wide range because of variations in
nasopharyngeal tissue and nasopharyngeal carcinoma. measurement conditiorig;cluding illumination power, sepa-
ration of endoscope from tissue, and incident or emission
angles over the imaged tissue surfafrem individual to in-

2.2 In Vivo Autofluorescence Spectra dividual and from measuring site to site for each individual.
The autofluorescence spectral data used in this study are thefo eliminate the variations caused by the measurement con-
same as these used for the development of multiple- ditions, each spectral signal was normalized to its area before
wavelength band ratio algorithms and PCA algorithms in our further processing. The normalized spectra from na-
previous work!! A total of 216 autofluorescence spectral sig- sopharygeal carcinomas and normal tissues are shown in Figs.
nals were measureih vivo from 85 nasopharyngeal carci- 1(c) and 1d).
noma lesions and 131 normal tissue sites of 59 subjects during In the SVM learning and testing procedure, each spectrum
routine nasal endoscopy. The instrumentation of the measure-was treated as a vector with 211 dimensions and labeled ac-
ment system was described in detail in a previous p4pehe cording to the result of the histological examination. Specifi-
excitation light was a mercury arc lamp filtered with a band- cally, 131 normal samples were labeled-a% and 85 cancer-
pass filter with a bandwidth from 390 to 450 nm. The autof- ous samples were labeled asl. SVM'9" (version 5.00, an
luorescence was excited primarily by the strong spectral lines implementation of support vector machines in C langudge,
of the mercury at 404.66 and 435.84 nm, which share the was used to process the normalized autofluorescence data.
same upper initial energy levelS,. The relative intensities ~ Diagnostic algorithms based on linear and nonlinear SVMs
between the two strong spectral lines then remain constantwere developed. The performance of the SVM algorithms was
because the intensities are determined by their relative transi-evaluated with the leave-one-case-out cross-validation. In the
tion probabilities and are independent of the operation condi- cross-validation procedure, spectral samples recorded from
tions of the light source. one subject were held out from the whole dataset and the

The autofluorescence and reflection of the excitation light remaining samples were treated as a training set for develop-
signals were collected from examined tissue by a Karl Storz ing the SVM diagnostic algorithms to classify the withheld
nasal endoscope and separated by a dichoic mirror with aautofluorescence spectra. The linear SVM algorithms devel-
cut-on wavelength at 470 nm. The fluorescence signals col-oped from the training set were optimized by exhaustively
lected by the endoscope were conducted to a multichannelsearching the optimal value of parame@rThe optimization
spectrometer with seven optical fibers that were evenly dis- criterion was to minimize the number of misclassified samples
tributed in the image plane of the endoscope. The spectrally or maximize the classification accuracy in the training set. In
dispersed autofluorescence signals were recorded using arthe exhaustive searching process, the initial valu€ olas
ICCD camera in the wavelength range from 470 to 680 nm, set to the defaul€ provided bySVM''9" that was calculated
with an interval of 0.37 nm. In order to reduce the dimensions with [ Averag€x,x)] 1. Here,x consists of the sample vec-
of raw data, the spectra were smoothed using moving-window tors in the training set. Thus the initial value of parameer
filtering and the wavelength resolution was reduced to 1 nm. was related to the statistical property of the training dataset. In
The final dimension of each spectral signal before further pro- the nonlinear approach, an RBF kernel was used to construct
cessing was 211. the diagnostic algorithm. Tuning the value of parametef

The autofluorescence signals were collected from endo- the RBF kernel, the optimal value of parame@was deter-
scopically normal and abnormal sites for each subject. Two mined by exhaustive searching with each selected value of
autofluorescence spectra were recorded from each site in twaThe criterion for optimizing the algorithms in the training set
different angles because the characteridiictensity and line was the same as that used in linear SVM method.
shape of autofluorescence signals are affected by the illumi- The optimized algorithms developed from the training set
nation and collection geometry. Normally, a total of four spec- were used to classify the withheld spectral samples measured
tra were collected from one subject except for a few cases in from one subject. This procedure was repeated until all 216
which it was difficult to maneuver the endoscope to measure samples collected from 59 subjects were classified. It should
fluorescence signals from the same tissue site at differentbe noted that new algorithms were constructed using the re-
angles. Biopsy specimens were taken from tissue sites frommaining spectra recorded from 58 subjects as a training set in
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Fig. 1 Autofluorescence spectra of nasopharyngeal carcinoma (NPC) and normal tissue. (a) Raw spectra from normal tissue. (b) Raw spectra from
NPC. (c) Normalized spectra from normal tissue. (d) Normalized spectra from NPC.

every round of cross-validation. The overall classification ac- value of C that maximized classification accuracy for the

curacy, sensitivity, and specificity of a particular algorithm leave-one-case-out cross-validation.

were calculated based on the classifications of the withheld In the development of nonlinear SVM algorithms, an op-

samples over 59 rounds of cross-validation. timal C that maximizes classification accuracy can be deter-
The results of the classifications of all threvivo autofluo- mined for each selected value of the RBF parametédrwas

rescence signals using linear and nonlinear SVM algorithms found that the classification accuracy was not sensitive to pa-

are summarized in Table 1. As a reference, the best results inrametery. In a wide range of values f& andvy, many sets of

classifying the same dataset using the PCA algorithm reportedC andy could be found to yield the same classification accu-

in Ref. 11 are also included in the table. The results demon- racy. Figure 3 shows the optimal sets @fand y that pro-

strate that both the linear SVM algorithm and nonlinear SVM

algorithms performed better than the PCA algorithm. The lin-

ear SVM and RBF SVM algorithms were constructed with 38 98

and 70 sample vectok®r support vectops respectively. Fig- —
ure 2 shows how the classification accuracy of a linear SVM X 97+
algorithm depends on the paramein a wide-range search >
. . . . O g6
for optimal C. The algorithm was optimized by choosing the © i
= mooo
8 951 oo
®© o
c
Table 1 Results of classification of autofluorescence with different o 944 O
algorithms. ® oo
2 93
B | m]
Sensitivity Specificity Accuracy & 92
Algorithm (%) (%) (%) O u]
91 T T T v T T T T T v T v T
Linear SVM 94 97 96 00 02 04 06 08 10 12
Value of parameter C (a.u.
Nonlinear SVM (RBF) 95 99 98 P ( )
PCA (Ref. 11) 93 95 04 Fig. 2 Dependence of classification accuracy on parameter C for a

linear SVM algorithm.
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Parameter C (a.u.)

204

16

12

Finally, it also should be pointed out that the lesions stud-
ied in this work were all invasive. Unlike other well-
investigated organ sites, such as the lung, colon, and cervix,
dysplasia and carcinoma situ in the nasopharynx are rarely
reported?®~32 Over a period of 10 months of collection of
vivo autofluorescence spectra, we did not find a lesion of na-
sopharyngeal dysplasia and carcinomasitu.

The dimension of spectral data is generally high. For in-
stance, the autofluorescence spectrum used in this study has
211 dimensions. The high dimension of data space may cause

complexity in optimization and implementation of the SVM
algorithm because computation of all the inner products be-
tween the sample and support vectors in a high-dimensional
feature space is complicated and time-consuming. This limits
the see of the SVM method in applications that require fast or
even real-time data processing. We investigated the possibility
of simplifying the implementation of the SVM algorithm and
improving its performance by reducing the dimensions of the
spectral data using the PCA method.

Principal component analysis is a mathematical tool that
reduces the dimensions of a dataset to a set of informative
principal component§PC9 that account for most of the vari-
duced the maximal classification accuracy in a training set. ance of the original dataset. The first PC accounts for as much
For both linear and nonlinear SVM algorithms, the classifiers of the variability in the dataset as possible, and each succeed-
generated from the training sets over 59 rounds of cross-ing component accounts for as much of the residual variabil-
validations were stable and almost the same. It should beity as possible. Therefore the PCs are normally arranged in the
noted that optimal paramete(€ and y) determined by the  order of their contributions to the variance of entire dataset. In
procedure of leave-one-case-out cross-validation may result inprinciple, PCA is an operation that rotates the coordinates of
an optimistic bias. the original data to form new coordinates using the PCs. Most

As can be seen, the nonlinear SVM produced a sensitivity of the information carried in the data is distributed in the first
and specificity higher than the linear SVM. This indicates that few PCs of the new coordinates. The contributions from the
the boundary separating autofluorescence from nasopharyn+test of the PC coordinates are negligible. By presenting the
geal carcinoma and that from normal tissue is not linear. The original data in new PC coordinates formed with a few infor-
spectral signals of some cancerous tissues cannot be clearlynative PCs, the dimensions of the data can be significantly
separated from those of normal tissues in the feature space ofeduced without losing important information. The implemen-
the spectral dataset. The linearization of the separating bound-tation of SVM algorithms in a data space with a much lower
ary by mapping the original spectral data to a high dimen- dimension should be more efficient and consume less time.
sional space in the nonlinear SVM algorithms improves the ~ When PCA is used to process autofluorescence spectra, it
diagnostic accuracy. transforms wavelengths, the original spectral variables, into a

The subjects enrolled in this study were all clinically sus- set of PC spectra. Each original spectrum is a combination of
picious patients exhibiting a nasopharyngeal abnormality en- the PC loading spectra that are orthogonal to each other. The
doscopically. Endoscopic diagnosis of nasopharnygeal carci-PCs with negligible contributions to the variance of the
noma is based on the fact that most of tumors show markeddataset are eliminated. The dimensions of the dataset for de-
racial and geometric variation. The biopsy must be taken from veloping the diagnostic algorithm can then be significantly
an endoscopically identified tumorous tissue site for histologi- reduced without losing useful information. Figure 4 shows the
cal analysis. However, this criterion generates a significant contribution of each PC to the variance of the 216 autofluo-
number of false positives, especially when the lesion is rela- rescence spectra. The PCs were calculated with a MATLAB-
tively flat. A clinical investigation showed that the sensitivity based PCA program. As shown in the figure, the first two PCs
and false positive rate of endoscopy with a single biopsy for account for 86.4% of the total variance; the first five PCs
detecting nasopharnygeal carcinoma was about 85 and 15%account for 97%; the first ten PCs account for 98.5%; and the
respectively® Here, the false positive rate is defined as the first twenty PCs account for 99.5%.
ratio of the number of false positives over the total number of  Linear and nonlinear SVM algorithms were developed us-
endoscopically identified tumorous tissue sites. In this study it ing the projection scores of the autofluorescence spectra on
was found that 16 biopsies taken from 59 subjects showed PC loadings. The performance of the linear SVM algorithms
false positives. The false positive rate was about 27%. In con- with different numbers of PCs was compared with the results
trast to endoscopic diagnosis, only two false positives were obtained from the spectral data in wavelength space shown in
produced by the autofluorescence spectroscopy method. TheTable 1. We found that the linear SVM algorithm with the first
sensitivity of the fluorescence method with the SVM algo- two PCs produced a sensitivity of 94% and a specificity of
rithm was up to 95%. Thus autofluorescence spectroscopy97% in differentiating NPC from normal tissue. This accuracy
combined with conventional nasal endoscopy can substan-is identical to that achieved by the linear SVM algorithm in
tially improve diagnostic accuracy. the wavelength space of 211 dimensions. The performance of

0012 0016 0020
Parameter » (a.u.)

0.008 0024

Fig. 3 Optimal sets of parameters C and vy obtained in the develop-
ment of a nonlinear SVM algorithm using an radial basic function
(RBF) kernel. The C and 7y sets shown in the figure produced the same
and maximal accuracy.
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/a ods, the dimensions of the data were reduced from 211 to 9. It
701 is important to note that the numbers of support vectors used
| in the SVM algorithms with six and nine PCs are also less
- 60+ . . .
S than those of SVM algorithms using spectral data in wave-
D 50 length space. This demonstrates that the PCA method can sub-
T 1 stantially simplify SVM algorithm without sacrificing diag-
3 40+ nostic accuracy.
o ]
o 304
S 4 Conclusions
%, 204 Linear and nonlinear SVM methods were successfully imple-
E 10_' mented for the classification of autofluorescence signals from
] nasopharyngeal carcinomas and normal tissues. The results
0- demonstrate that autofluorescence spectroscopy with an SVM
— 7T/ T T algorithm can achieve high diagnostic accuracy in differenti-
0 5 10 15 100 150 200

ating nasopharyngeal carcinoma from normal tissue. Com-
PC numbers pared with the previously developed algorithms using the
same dataset and the principal component analysis
technique'! the SVM algorithms produced better diagnostic

accuracy in all instances. In principle, a statistical comparison
is desirable to evaluate the performance of different algo-

the linear SVM algorithm was not improved by adding more rithms. Howevgr, .SUCh an ar)aly5|s requires an accurate.estl-
mate of the statistical properties of a dataset to draw a reliable

PCs. This demonstrates that the first two PCs captured all the . . .

information necessary for classifying the linearly separable ponclusmn. This cannot be plong when the size of the dataset
samples. It indicates that linear SVM algorithms developed in is small, .SUCh as that used in this study. . .
two-dimensional PC space are equivalent to those developed Combined PCA and SVM methods were investigated. It

from the autofluorescence spectral data. The complexity of the V&S found that SVM a_md Comb'”ed PCAand SVM algorlthms
linear SVM algorithm using two PC scores was tremendously produced the same diagnostic accuracy. PCA can substantially

reduced because the PCA method decreased the dimension orieduce the complexity of an SVM algorithm without sacrific-

the data from 211 to 2. Also, the combined PCA and linear MY the pgrformance_of the glgorithm. The sim_plifi_cation of
SVM methods produced a classification accuracy that was the algorithm is particularly important for applications that

better than that of the PCA algorithms reported in our previ- require rapid processing of a large amount of multivariate
ous study'! data, as in real-time multispectral imaging and optical pro-

The results of implementing nonlinear SVM with PC cessing_systgrrf@:“lt is an interesting f_inding that SVM can
scores are summarized in Table 2. The results with the first help t.o .'de”F'fy the PCs th?‘ carry the information headed for
two PCs are identical to those of the linear SVM algorithm. classifying linearly or nonlinearly separable samples, which

The classification accuracy begins to increase by adding up toprovide important. statistical properties of multivariate data
six PCs. The maximal accuracy is achieved when the first nine samples._ Fm_ally,_ it should be noted that using Ieave_-one-out
PCs are used. This result is identical with the best result op- &'0SS-validation is common for small datasets, but indepen-
tained from the nonlinear SVM algorithm using the spectral dent tra!nmg-valldatlon and test sets are more desirable for a
data in the wavelength space of 211 dimensions. The perfor- study with a large volume of samples.

mance of the nonlinear SVM algorithm was not improved
further by adding more than nine PCs. This indicates that the
first two PCs contribute to the classification of linearly sepa- The authors acknowledge support from the Hong Kong Re-
rable samples, and the PCs from six to nine capture the majorsearch Grants Council through grants HKUST6052/00M and
information needed to classify the nonlinearly separable HKUST6025/02M.

samples. With the combined PCA and nonlinear SVM meth-

Fig. 4 Contributions of principal components to the total variance of
216 spectral data.
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