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Lightening the way of hematopoie
sis: Infrared laser-mediated lineage

tracing with high spatial-temporal resolution
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Hematopoiesis refers to the developmental process generating all blood lineages. In

vertebrates, there are multiple waves of hematopoiesis, which emerge in distinct ana-

tomic locations at different times and give rise to different blood lineages. In the last

decade, numerous lineage-tracing studies have been conducted to investigate the hierar-

chical structure of the hematopoietic system. Yet, the majority of these lineage-tracing

studies are not able to integrate the spatial−temporal information with the develop-

mental potential of hematopoietic cells. With the newly developed infrared laser-evoked

gene operator (IR-LEGO) microscope heating system, it is now possible to improve our

understanding of hematopoiesis to spatial−temporal-controlled single-cell resolution.

Here, we discuss the recent development of the IR-LEGO system and its applications

in hematopoietic lineage tracing in vivo. © 2020 ISEH – Society for Hematology and

Stem Cells. Published by Elsevier Inc. All rights reserved.
Hematopoiesis is a vital developmental process in which

all blood cells, including erythrocytes and leukocytes, are

generated. It has long been recognized that vertebrate

hematopoiesis occurs in multiple waves in various ana-

tomic sites. In mammals, the first or primitive wave of

hematopoiesis begins in the yolk sac (YS) and generates

predominantly erythrocytes and macrophages [1]. Shortly

after the primitive hematopoiesis, a transient erythroid/

myeloid progenitor (EMP) population is observed in the

YS [2,3]. Finally, the definitive wave of hematopoiesis

emerges in the aorta−gonad−mesonephros (AGM) region,

where the hemogenic endothelium in the ventral wall of
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dorsal aorta gives rise to hematopoietic stem and progeni-

tor cells (HSPCs) through endothelial-to-hematopoietic

transition (EHT). These HSPCs subsequently migrate to

the fetal liver for a transit expansion and differentiation

and finally reach the bone marrow, where they continu-

ously generate all hematopoietic lineages, except for some

tissue resident macrophages, in adulthood [4,5]. In addition

to these two conventional waves of hematopoiesis, hemato-

poietic activities have also been reported in other anatomic

sites. For example, definitive hematopoietic activity has

been detected in the allantois and chorionic mesoderm [6];

hematopoietic stem cell (HSC) activities have also been

found in the placenta, YS, and head region [7−10]. Hence,
a comprehensive understanding of the development of

hematopoietic cells from different waves of hematopoie-

sis needs to integrate the information from multiple

dimensions: when and where these cells are generated;

what kinds of progenies these different waves of hemato-

poiesis would give rise to; and where the mature progenies

derived from different waves of hematopoiesis reside.
by Elsevier Inc. All rights reserved.
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One approach used to dissect the blood cell develop-

ment of the different waves of hematopoiesis is to col-

lect specific hematopoietic tissues at desired stages and

conduct in vitro/ex vivo culture or transplantation assay

[5,6] (Figure 1A). However, this strategy provides only

relatively low spatial resolution of cell lineage tracing,

and moreover, the in vitro/ex vivo culture or transplan-

tation assay may not faithfully recapitulate the in vivo

hematopoietic activities. To avoid this problem, cell

fate mapping needs to be performed in vivo. The most

widely used strategy of in vivo lineage tracing is the

hematopoiesis-specific promoter-controlled CreER-loxP

fate mapping system (Figure 1B). Because this system

depends largely on the specificity of the promoter, it is

therefore impossible to reach single-cell resolution and

may also lead to inconsistent results and even contra-

dictory conclusions. For example, Tie2 and Flt3 pro-

moter-mediated fate mapping suggests that EMPs are

the origin of most tissue resident macrophages in adult

mice, while Kit locus-mediated lineage tracing supports

the HSC origin theory [11,12]. Recently, cell barcoding

techniques have been utilized for fate mapping studies
Figure 1. Current lineage tracing techniques applied to hematopoiesis. (A)

ture or transplantation assay. (B) Promoter-controlled Cre/CreER-loxP fate

CRISPR/Cas9-induced random mutations or retroviral infection-induced in

age tracing.
(Figure 1C). These techniques include Polylox barcod-

ing, CRISPR/Cas9-induced random mutations, and ret-

roviral infection-induced insertions [13−15]. A similar

approach, which uses fluorescent proteins covering dif-

ferent spectra to serve as the color “barcoding,” has

also been developed and employed for fate mapping

analysis (Figure 1D). Basically, random loxP recombi-

nation leads to various copy numbers of different fluo-

rescent proteins in distinct progenitors. Each progenitor

then possesses its unique “color hue” because of the

combination of different fluorescent proteins. Because

the expression of these fluorescent proteins is controlled

by ubiquitously expressed promoters, the progenies can be

identified according to the same color hue as their progeni-

tors [16,17]. Compared with other barcoding methods,

color “barcoding” offers direct visualization of the proge-

nies in vivo. The resolution of this method depends on the

precision with which different color hues are distinguished.

In addition, single-cell RNA sequencing data have been

applied to reconstruct the differentiation trajectories of

hematopoiesis [18,19]. Although these methods are able

to achieve single-cell resolution, they cannot efficiently
Collection of specific hematopoietic tissues for in vitro/ex vivo cul-

mapping system. (C) Genetic barcoding strategy (Polylox barcoding,

sertions) for lineage tracing. (D) Color “barcoding” strategy for line-
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integrate the spatial−temporal information of hematopoietic

progenitors with their differentiation potential.

Since the early 1990s, lasers have been introduced

to activate the heat shock response in worm, fly, and

zebrafish [20−25]. The high precision of the laser

beam makes it possible to activate genes in specific

cells at superior resolution. However, these early

attempts utilized visible lasers, which require relatively

long irradiation time and often have toxic effects on

the targeted cells [21,25]. In the past few years, an

improved laser system, the infrared laser-evoked gene

operator (IR-LEGO) microscope heating system, has

been introduced for gene activation and cell fate map-

ping analysis in Caenorhabditis elegans and zebrafish

[26−30]. Because of the transparency of the embryos

and conserved hematopoietic program [1], zebrafish

have recently emerged as an ideal model for hemato-

poietic fate mapping study with the state-of-art optical

techniques. Briefly, a reporter zebrafish line, in which

the LoxP−DsRed−Stop−LoxP−GFP cassette is under

the control of a hematopoiesis-specific promoter, will

be created and outcrossed with the heat-shock promoter-

directed CreER transgenic fish, Tg(hsp70:mCherry-T2a-

CreERT2). With the double-transgenic fish, the IR-LEGO
Figure 2. Schematics of the single-cell IR-LEGO system. (A) Fluorescent d

as temperature indicators in tissues. Heat shock of a specific cell is generat

damage. (B) The heat shock microscope system can tightly focus the IR l

aperture (NA). A femtosecond laser is simultaneously employed to excite

The two-photon fluorescence is subsequently analyzed by spectroscopy to c

age tracing of a single hematopoietic endothelial (HE) cell. The heat shock

island (PBI) of zebrafish embryos. The IR-irradiated embryo is then raised

poietic lineages is recorded.
system will utilize an infrared laser to generate local

heat to induce the expression of CreER, followed by

4-OH-tamoxifen (4-OHT) treatment. As a result, the

heat-shocked progenitor cells and their progenies will be

tracked by the expression of GFP. Thus, the IR-LEGO

system can genetically label progenitor cells in a partic-

ular position at a desired timing. The cell fate of these

labeled cells then can be traced. Because this method

depends only on the position and timing of laser shin-

ing, it exhibits no labeling bias of cell types. With this

method, we have suggested the HSC origin of tissue

resident macrophages and the existence of non-HSC-

derived T cells [26,27,29]. However, the original IR-

LEGO technique cannot reach single-cell resolution and

hampers further dissection of hematopoietic lineages. To

achieve fate mapping with single-cell resolution, we

need to (1) confine the heating volume in a single-cell

dimension; (2) establish a criterion to determine the

optimal heat shock condition for single-cell labeling;

and (3) avoid cell damage caused by overheating.

Recently, we advanced the IR-LEGO technique to

single-cell labeling resolution [31] (Figure 2). To

achieve high efficiency of single-cell labeling, a water-

immersion objective with a large numerical aperture
yes (FITC and TAMRA) are injected into zebrafish embryos to serve

ed by infrared (IR) laser scanning over the targeted cell to avoid cell

aser on zebrafish tissues through an objective with a high numerical

the fluorescent dyes (temperature indicator) in the targeted cell. (C)

alculate the cellular temperature (fluorescent thermometry). (D) Line-

is performed on a single HE at the aortic floor of the posterior blood

to a desired stage, and the contribution of the labeled HE to hemato-

https://doi.org/10.1016/j.exphem.2020.04.009
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(NA) was employed to tightly focus the infrared laser

beam into the zebrafish so that a nearly point heat

source would be generated inside the tissue. We then

developed a cutting-edge two-photon fluorescence ther-

mometry (TPFT) technique to noninvasively measure

the three-dimensional cellular temperature raised by

the infrared laser in a living zebrafish with high accu-

racy. In brief, thermally sensitive tetramethylrhodamine

(TAMRA) and thermally insensitive fluorescein isothio-

cyanate (FITC) dyes were injected into zebrafish

embryos. Because the two-photon excited fluorescence

(TPEF) intensity ratio of TAMRA and FITC is linearly

correlated with solution temperature, the peak tempera-

ture and volume of thermal diffusion in the heat-

shocked cells could then be measured and serve as a

gold standard to objectively optimize the single-cell

labeling condition for a specific cell type. Under this

optimized irradiation condition, the heat diffusion gen-

erated by the infrared laser in the zebrafish tissues

would be restricted in a single-cell dimension. Finally,

we adopted a scan heating mode by constantly scan-

ning the infrared laser over the whole target cell for 32

sec (an optimized duration to label cells but avoid cell

damage) to minimize the laser injury, thereby produc-

ing a fine balance between labeling efficiency and cell

viability. With this strategy, we have been able to

achieve single-cell labeling in different tissues of

zebrafish, including a single myocyte in the skeletal

muscle (80-mW infrared laser heat shock, 54.5% suc-

cess rate), a single neuron in the central nervous sys-

tem (95-mW infrared laser heat shock, 100% success

rate), and a single leukocyte in hematopoietic tissues

(80-mW infrared laser heat shock, 77.8% success rate).

To have a proof of concept of this improved IR-LEGO

system, we labeled and traced a single hematopoietic

endothelial (HE) cell in the aortic floor of the posterior

blood island in zebrafish, where hematopoietic progeni-

tors are known to emerge [29,32]. The fate mapping

result reveals that HE cells are heterogeneous and con-

tain at least two subpopulations: one gives rise to mye-

loid progenies exclusively and the other produces both

T lymphocytes and myeloid cells [31]. An intriguing

issue for single-cell resolution fate mapping is the

interference of background noise, which arises from

occasional activation of the heat shock promoter in

zebrafish without heat shock in this case. To overcome

this problem, we employed a maximum likelihood esti-

mation (MLE) method to depict the progeny of the tar-

geted single cell with high fidelity. MLE is a statistical

method used to extract desired information in the pres-

ence of background noise [33]. Indeed, the utilization

of MLE significantly improves the fidelity of the sin-

gle-cell IR-LEGO system [31]. On the other hand, con-

sidering that a single HSC is capable of giving rise to

a large number of progenies, this background noise
should have little influence, if any, on HSC lineage

tracing. The current IR-LEGO system does have a few

limitations. For example, it is more applicable to transpar-

ent samples, and the efficiency of single-cell labeling in

some tissues is relatively low. Further refinement of the

IR-LEGO system will be required to solve these problems.

Nevertheless, we believe that this single-cell IR-LEGO

system provides a powerful tool to study not only hemato-

poiesis but also stem cell biology in general.

In sum, the improved IR-LEGO system has indeed

reached the highest resolution of cell labeling. With this

unique system, information on the origins of hematopoi-

etic progenitors and their differentiation potentials can

be integrated, allowing us to address some long-lasting

questions such as whether HSCs are generated in multiple

positions and what kind of progenies can be generated

from non-HSC progenitors from new dimensions.
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